Chapter 16: pp. 283 - 298

How Populations Evolve

10% of population

natural disaster kills five green frogs

20% of population
Outline

- Population genetics
 - Variations in terms of allele differences.

- Microevolution
 - Hardy-Weinberg
 - Causes of Microevolution

- Natural Selection
 - Types of Selection

- Macroevolution
Population Genetics

- Population
 - All members of a single species
 - Occupying a particular area at the same time.
HapMap Project

- People inherit patterns of sequence differences, called haplotypes
 - If one haplotype of a person has an A rather than a G at a particular location in a chromosome, there are probably other particular base differences near the A
 - Genetic data from African, Asian, and European populations will be analyzed

- A HapMap is a catalog common sequence differences that occur in a species
 - The goal of the project is to link haplotypes to risk for specific illnesses
 - May lead to new methods of preventing, diagnosing, and treating disease
HapMap Project

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(Top left, center, right; Bottom 1, 3, 4): © Vol. 105/PhotoDisc/Getty; (Bottom 2): © Vol. 42/PhotoDisc/Getty; (Bottom 5): © Vol. 116/PhotoDisc/Getty
Microevolution

- In 1930s population geneticists described variations in a population in terms of alleles.

Microevolution pertains to evolutionary changes within a population.

- Various alleles at all the gene loci in all individuals make up the **gene pool** of the population.
- Gene pool of a population:
 - Genotype
 - Allele frequencies
Frequency of Gametes Calculation

From genotype frequencies, the allele and gamete frequencies can be calculated.

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>DD</th>
<th>Dd</th>
<th>dd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of genotypes in the population</td>
<td>0.04</td>
<td>0.32</td>
<td>0.64</td>
</tr>
<tr>
<td>Frequency of alleles and gametes in the population</td>
<td>0.04 + 0.16</td>
<td>0.16 + 0.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.20 D</td>
<td>0.80 d</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The Hardy-Weinberg principle:

- Allele frequencies in a population will remain constant assuming:
 - No Mutations
 - No Gene Flow
 - Random Mating
 - No Genetic Drift
 - No Selection
Hardy-Weinberg Equilibrium

F₁ generation

Genotypes:
- DD
- Dd
- dd

Genotype frequencies:
- DD: 0.04
- Dd: 0.32
- dd: 0.64

Allele and gamete frequencies:
- D = 0.20
- d = 0.80

F₂ generation

<table>
<thead>
<tr>
<th>Eggs</th>
<th>D</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 D</td>
<td>0.80 d</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sperm</th>
<th>0.20 D</th>
<th>0.80 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 D</td>
<td>0.04 DD</td>
<td>0.16 Dd</td>
</tr>
<tr>
<td>0.80 d</td>
<td>0.16 Dd</td>
<td>0.64 dd</td>
</tr>
</tbody>
</table>

Offspring

Genotype frequencies:
- DD: 0.04
- Dd: 0.32
- dd: 0.64

\[p^2 + 2pq + q^2 = 1 \]

- \(p^2 \) = frequency of DD genotype (dark-colored) = \((0.20)^2\) = 0.04
- \(2pq \) = frequency of Dd genotype (dark-colored) = \(2(0.20)(0.80)\) = 0.32
- \(q^2 \) = frequency of dd genotype (light-colored) = \((0.80)^2\) = 0.64

= 1.00
Industrial Melanism and Microevolution

Early observation

Later observation

36% dark-colored phenotype

64% dark-colored phenotype
Hardy-Weinberg

- Required conditions are rarely (if ever) met
 - Changes in gene pool frequencies are likely
 - When gene pool frequencies change, microevolution has occurred

- Deviations from a Hardy-Weinberg equilibrium indicate that evolution has taken place
Causes of Microevolution

- Genetic Mutations
 - The raw material for evolutionary change
 - Provides new combinations of alleles
 - Some might be more adaptive than others
Causes of Microevolution

- **Gene Flow**
 - Movement of alleles between populations when:
 - Gametes or seeds (in plants) are carried into another population
 - Breeding individuals migrate into or out of population
 - Continual gene flow reduces genetic divergence between populations
Gene Flow

Pisum sativum

self-pollination

stigma

stamen
Causes of Microevolution

Nonrandom Mating

- When individuals do not choose mates randomly
 - Assortative mating:
 - Individuals select mates with their phenotype
 - Individuals reject mates with differing phenotype
 - Sexual selection:
 - Males compete for the right to reproduce
 - Females choose with males possessing a particular phenotype
- Both of these cause an increase in homozygotes
Causes of Microevolution

- Genetic Drift
 - Occurs by disproportionate random sampling from population
 - Can cause the gene pools of two isolated populations to become dissimilar
 - Some alleles are lost and others become fixed (unopposed)
 - Likely to occur:
 - After a bottleneck
 - When severe inbreeding occurs, or
 - When founders start a new population
 - Stronger effect in small populations
Genetic Drift

10% of population

natural disaster kills five green frogs

20% of population
Genetic Drift

- **Bottleneck Effect**
 - A random event prevents a majority of individuals from entering the next generation
 - Next generation composed of alleles that just happened to make it
Genetic Drift

- Founder Effect
 - When a new population is started from just a few individuals
 - The alleles carried by population founders are dictated by chance
 - Formerly rare alleles will either:
 - Occur at a higher frequency in the new population, or
 - Be absent in new population
Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the "Normal" or "Slide Sorter" views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at http://get.adobe.com/flashplayer.

Even this larger population is not immune to ultimate fixation of an allele by genetic drift. However, in most cases a very large number of generations will pass before fixation occurs.
Founder Effect
Natural Selection

- Adaptation of a population to the biotic and abiotic environment
 - Requires:
 - Variation - The members of a population differ from one another
 - Inheritance - Many differences are heritable genetic differences
 - Differential Adaptiveness - Some differences affect survivability
 - Differential Reproduction – Some differences affect likelihood of successful reproduction
Natural Selection

- Results in:
 - A change in allele frequencies of the gene pool
 - Improved fitness of the population

- Major cause of microevolution
Types of Selection

- Most traits are polygenic - variations in the trait result in a bell-shaped curve

- Three types of selection occur:

 (1) Directional Selection

 - The curve shifts in one direction

 - Bacteria become resistant to antibiotics

 - Guppies become more colorful in the absence of predation
Three Type of Natural Selection

Phenotype Range

1. Stabilizing selection
 - Peak narrows.
 - Number of Individuals

2. Directional selection
 - Peak shifts.
 - Number of Individuals

3. Disruptive selection
 - Two peaks result.
 - Number of Individuals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Directional Selection

All guppies are drab and small

Experimental site

above waterfall

below waterfall

Result

© Helen Rodd
Three types of selection occur (cont):

(2) Stabilizing Selection
- The peak of the curve increases and tails decrease
- Ex - when human babies with low or high birth weight are less likely to survive

(3) Disruptive
- The curve has two peaks
- Ex – When *Cepaea* snails vary because a wide geographic range causes selection to vary
Due to stabilizing selection, the average human birth weight stays steady.
Disruptive Selection

Forested areas

Low-lying vegetation

© Bob Evans/Peter Arnold, Inc.
Sexual Selection

● Female Choice
 ● Choice of a mate is serious consideration
 ● Good genes hypothesis: Females choose mates on the basis of traits that improve the chance of survival.
 ● Runaway hypothesis: Females choose mates on the basis of traits that improve male appearance.

● Male Competition
 ● Can father many offspring because they continuously produce sperm in great quantity.
 ● Compete to inseminate as many females as possible.
Sexual Selection

- **Sexual selection** adaptive changes in males and females to increase ability to secure a mate.
 - Males - ability to compete
 - Females choose to select a male with the best **fitness** (ability to produce surviving offspring).
The drab females tend to choose flamboyant males as mates.
Sexual Selection: Competition

a: © Y. Arthus-Bertrand/Peter Arnold, Inc.; b: © Neil McIntyre/Getty Images
Sexual Selection: Competition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Barbara Gerlach/Visuals Unlimited
Study shows that female choice and male competition apply to humans too

- Women must invest more in having a child than men.
- Men, need only contribute sperm
 - Generally more available for mating than are women.
- More men = competition
- Men Also Have a Choice
 - Prefer women who are most likely to present them with children.
King Husain and Family

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Jodi Cobb/National Geographic Image Collection
Maintenance of Variations

● Genetic variability

 ● Populations with limited variation may not be able to adapt to new conditions

 ● Maintenance of variability is advantageous to population

● Only exposed alleles are subject to natural selection
Maintenance of Variations

- Recessive alleles:
 - Heterozygotes shelter recessive alleles from selection
 - Allows even lethal alleles to remain in population at low frequencies virtually forever
 - Lethal recessive alleles may confer advantage to heterozygotes
 - Sickle cell anemia is detrimental in homozygote
 - However, heterozygotes more likely to survive malaria
 - Sickle cell allele occurs at higher than expected frequency in malaria prone areas
Species Definitions

- **Species Definitions**
 - **Morphological**
 - Can be distinguished anatomically
 - Specialist decides what criteria probably represent reproductively isolated populations
 - Most species described this way
Species Definitions

- Biological
 - Populations of the same species breed only among themselves
 - Are reproductively isolated from other such populations
 - Very few actually tested for reproductive isolation
Heterozygote Advantage

- Assists the maintenance of genetic, and therefore phenotypic, variations in future generations.
- In sickle cell disease heterozygous individuals don’t die from sickle-cell disease, and they don’t die from malaria.
Sickle Cell Disease
Review

- Microevolution
 - Hardy-Weinberg
 - Causes of Microevolution

- Natural Selection
 - Types of Selection

- Macroevolution
How Populations Evolve

10% of population

natural disaster kills five green frogs

20% of population